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A new method SQ has been developed to provide fast, automatic, and objective pairwise three-
dimensional molecular alignments. SQ uses an atom-based clique-matching step followed by
an alignment scoring function that has been parametrized to recognize pharmacologically
relevant atomic properties. Molecular alignments from SQ are consistent with known drug-
receptor interactions. We demonstrate this with six pairs of receptor-ligand complexes from
the Brookhaven Protein Data Bank. The SQ-generated alignment of one isolated ligand onto
another is shown to approximate the alignment of the ligands when the receptors are
superimposed. SQ appears to be better than its predecessor SEAL (Kearsley and Smith,
Tetrahedron Comput. Methodol. 1990, 3, 615-633) in this regard. SQ has been tailored so
that, given one molecule as a probe, it can be used to routinely scan large chemical databases
for which precomputed conformations have been stored. The SQ score, a measure of 3D
similarity of each candidate molecule to the probe, can be used to rank compounds for the
purposes of chemical screening. We demonstrate this with three probes (a thrombin inhibitor,
an HIV protease inhibitor, and a model for angiotensin II). In each case SQ can preferentially
select from the MDDR database other compounds with the same activity as the probe. We
further show, using the angiotensin example, how SQ can identify topologically diverse
compounds with the same activity.

Introduction

While the structures for some pharmaceutically in-
teresting receptors are known at atomic detail, little or
no structural information is available for most of them.
Chemists must therefore resort to an approach wherein
the structural requirements for biological activity are
deduced by comparing small molecules. One of the most
common types of operations in molecular modeling is
to superimpose two or more molecules onto each other.
Many superposition methods have been described.1-15

There are two major applications of superposition. One
might be called “pharmacophore elucidation”. A chemist
might superimpose two or more molecules and then
observe which properties are common to them all at
certain locations in space. Presumably the common
properties are required for activity. Another application
is 3D database searching, wherein a chemist uses an
interesting molecule as a probe and searches a large
database for other compounds which are similar in 3D
structure. Not all types of 3D searches use superposi-
tions, but the ones that do have the advantage that they
generate atomic correspondences between the probe and
molecules from the database.

Generally superposition methods fall into two catego-
ries: field-based 1,4,6,15 and atom-based.11,12 In the first

category are methods which attempt to quantify simi-
larity by projecting one or more properties of the
molecules into space or onto a surface. These methods
have the desirable features of being unbiased by atom
positions. However these techniques suffer from a need
to carefully sample orientation space to avoid being
trapped in local minima. They usually make compari-
sons based on the fit of the molecules as a whole, which
makes this approach unsuitable for comparing mol-
ecules of very different sizes. Finally these methods tend
to be CPU-intensive, which makes them less suitable
for searching large databases. In the second category
are methods that generate sets of atom-atom pairings
to specify alignments. These approaches have the desir-
able features of being fast and capable of handling
molecules of disparate size. Most current methods
suffer, however, from two drawbacks. They are very
sensitive to atom positions, and they have only rudi-
mentary scoring of alignments, so that visual inspection
of the alignments is often necessary.

Most current methods, of either category, assume that
the molecules to be superimposed are rigid. The fact that
most druglike molecules are flexible adds another layer
of complexity. Typically, flexibility is addressed by using
many explicit conformations for each molecule1,4-7,11 or
allowing on-the-fly flexing,3,8-10,13,14 although only the
former is usually fast enough for database searches.

An ideally useful superposition method would com-
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bine the best features of the methods discussed above
and have the following characteristics:

1. It should be automatic and unbiased.
2. It should produce all relevant superpositions,

including those which are nonobvious or nonintuitive.
3. It should generate a meaningful measure of the

goodness of superposition.
4. It should work on very similar as well as very

dissimilar molecules.
5. It should allow for local comparisons, so it will work

on molecules of very different sizes.
6. It should recognize those aspects of molecules that

are important for receptor recognition.
7. It should be very rapid, so database searches are

practical.
In this paper we will present SQ, a new method of

producing molecular alignments. SQ combines in a self-
consistent manner several lines of research in our
laboratory: pharmaceutically relevant atomic descrip-
tors,16,17 technology for producing representative con-
formations,18 clique-searching strategies,19 and a robust
and objective superposition scoring function. We dem-
onstrate with specific examples how SQ possesses most
of the features that make for a useful superposition
method.

Methods

Atomic Representation. In SQ we typically consider only
non-hydrogens. Each atom has a composite “SQ type” which
includes information about atomic number, hybridization, and
physiochemical types. Physiochemical types are the same used
in our work in FLOG.19 These types are 1 ) cations, 2 )
anions, 3 ) neutral H-bond donors, 4 ) neutral H-bond
acceptors, 5 ) polar (unspecified H-bonding group), 6 )
hydrophobic, 7 ) other. The physiochemical types are meant
to represent ionization states at physiological pH. How as-
signments are made is given in Bush and Sheridan.20 A square
matrix P stores the user-assigned similarity of any of the 43
SQ types with any other. During the development of SQ, the
original elements of P were assigned by our intuitive ideas
about how much the physiochemical types should resemble
each other. These were modified for element type and hybrid-
ization. Some values of P were adjusted manually so better
superpositions could be obtained for a set of druglike mol-
ecules. Our final values of P are available as Supporting
Information.

Overview of Superposition Algorithm. For any SQ
superpostion, one molecule is the “probe” and one is the
“candidate”. The candidate is to be optimally superimposed
on the probe. Both are held rigid. In the case of database
searches, each candidate may be a different conformation of
the same molecule. SQ superposition is a two-step process.
Initial superpositions of the candidate onto the probe are
generated by clique-finding algorithm. The second step opti-
mizes the superposition so that the superposition score as
measured by our SQuEAL function (Steric and Qualitative
Electronic ALignment) is maximum. The overall strategy is
given in Scheme 1.

Clique-Finding. As in the earlier descriptions of a similar
algorithm for FLOG,19 initial superpositions of each conforma-
tion onto the probe (steps 2.2-2.3) are generated by a method
of systematic distance matching wherein a clique-finding
algorithm looks for sets of candidate atom-probe atom pairs
such that all the candidate atom-atom distances are the same
as the corresponding distances in the probe within a given
tolerance. The minimum number of pairs nodlim and the
distance tolerance dislim are under user control. The default
values, 4 atoms and 1.5 Å, have been found to work well in a
variety of situations.

An innovation relative to our previous work is the develop-
ment of “colored cliques”. That is, atom i in the probe and atom
j in the candidate are allowed to match only if W(i,j) > 0 (see
the section on the SQuEAL function), that is, if they have
similar character. The inclusion of this simple match con-
straint, by keeping only the most promising matches, greatly
reduces the number of cliques that must be optimized. This is
similar in spirit to the “labeled matching” method described
by Schoichet and Kuntz.21 Details of the clique-finding algo-
rithm are in the Appendix.

As before we also use the concept of “essential atoms” in
the probe. Given Ness essential atoms, the user may specify
that at least Nreq essential atoms appear in every clique where
1 e Nreq e Ness. Clique building starts at essential atoms, and
cliques with less than Nreq essential atoms are eliminated. This
adds an additional speed-up. Essential atoms are one way of
including SAR information. In SQ we allow for three distinct
types of essential atoms: +, $, and %. The essential atom +
must be matched by some atom in the candidate, but the
candidate atom can be any type. The essential atom $ must
be matched by an atom in the candidate with the same atomic
number (e.g., nitrogen with nitrogen). The essential atom %
must be matched by an atom in the candidate of the same
physiochemical type (e.g., cation with cation). If no essential
atoms are assigned by the user, the atom closest to the centroid
of the probe is assigned as +.

SQuEAL Scoring Function. This superposition scoring
function is invoked in step 2.3.2 in Scheme 1. It is highly
modified from the SEAL function4 which may be considered
its ancestor. The score (eq 1) is a function of the particular
relative orientation of candidate and probe:

The more positive this number, the better the superposition.
The term W(i,j) is a measure of the overall similarity of atoms
i and j in the context of a molecule and is of the form:

where “atomic property similarity” is the similarity of the
character of the atoms i and j and is a function of P(i,j), while
“steric environment similarity” measures the similarity of the
“exposure” of the two atoms. Detailed definition of the two
components is given in the Appendix. The parameter â controls
the balance between the two components and 0 e â e 1. The
default value is â ) 0.5. The atomic overlap term O(i,j) is of
the form:

where r(i,j) is the distance between i and j. The parameter R
controls whether the alignment hypersurface will be more
steep around the atoms (R ∼ 0.5) or more flat (R ∼ 0.1). Values
between 0.3 and 0.4 seem the most useful, and the default

Scheme 1

score ) ∑
j)1

candidate

∑
i)1

probe

W(i,j)O(i,j) +

cavity term + restraint term (1)

W(i,j) ) â [atomic property similarity] +
(1 - â) [steric environment similarity] (2)

O(i,j) ) exp(-Rr(i,j)2) (3)
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value is R ) 0.3 (O(i,j) reaches half its maximal value at 1.5
Åsabout a bond length). The cavity term is of the form:

It penalizes situations where atoms in the candidate extend
more than a distance of rc, the cavity radius, from the nearest
probe atom. The default value is rc ) 6.0; that is, the candidate
can be somewhat bigger than the probe. The penalty restraint
is of the form:

It applies only to the i-j pairs where i is an essential atom
and j is a candidate atom that is matched to i. This restraint
keeps the matched atoms from drifting too far from each other
during simplex optimization.

Simplex Optimization. As in our previous work, the
spatial orientation of each molecule is characterized as a
quaternion rotation matrix, plus three components for transla-
tion. The quaternion is well-behaved with the simplex opti-
mizer. The optimizer maximizes the score by moving the
candidate as a rigid body until the orientation differs from the
previous step by less than 0.01 Å translation and 0.5° rotation.
This typically takes 10-15 iterations. The optimization can
move the initial orientation by as much as 12 Å and 180°.

Results
There are two types of experiments where we will

demonstrate the utility of SQ. The first is to show that
SQ produces good alignments of one rigid molecule onto
another. The second is to show that SQ can select active
compounds out of large databases.

Pairwise Superposition. How do we objectively and
unambiguously evaluate whether a method is producing
pharmaceutically optimal superpositions? One approach
is to examine the receptor-ligand complexes for which
we have two different ligands on the same receptor. In
the first phase of the experiment, one superimposes the
receptor structures. The ligands are carried along, and
the orientation of one ligand relative to the other can
be taken as the “observed superposition” of those
ligands. In the second phase, one superimposes one
isolated ligand onto the other using the superposition
method to be tested. We can call the orientation from
this phase the ”predicted superposition”. The predicted
superposition is then compared with the observed
superposition. This approach was used by Klebe and co-
workers5 when they investigated the effects on adjust-
able parameters when adding extra terms to the SEAL
function. For this work we chose six pairs of crystal
structures from the Brookhaven Protein Data Bank22

with ligands possessing a wide variety of chemical
functionality. Chemical structures for these are shown
in Figure 1.

The observed superpositions were produced by su-
perposing the equivalent R carbons of the two proteins
and then extracting the ligands. The calculated root-
mean-square residual (RMS) from the alignment of one
protein on another averaged about 0.3 Å. This reflects
the precision of the experimental data as well as protein
conformational changes which take place upon ligand
binding and provides a lower limit to the RMS for this
type of experiment. Predicted superpositions were gen-
erated by running SQ on the ligand coordinates directly
from the crystal structures. The default parameters
were used except that rc ) 20.0 to allow for differences
in sizes. Four values of R were tried. The top two

highest-scoring predicted superpositions S1 and S2 were
kept. The difference of these superpostions from the
observed superpositions was measured by the RMS over
non-hydrogen atoms. The SEAL method4 is used for
comparison. The results of these trials are summarized
in Table 1. An example of a predicted versus observed
superposition is shown in Figure 2.

cavity term ) max(0,rc - r(i,j)) (4)

restraint term ) -10r(i,j) (5)

Figure 1. Ligands from six pairs of ligand-enzyme crystal
complexes used in the evaluation of the SQuEAL alignment
function. The receptors are as follows: 1dwe and 1dwd, human
thrombin; 4dfr and 1dhf, E. coli dihydrofolate reductase; 1tlp
and 4tln, Bacillus thermolysin; 4phv and 9hvp, HIV-1 pro-
tease; 5er2 and 5er1, endothiapepsin; 3ptb and 1ttp, bovine
trypsin.

Figure 2. Representative superposition obtained with SQ. In
yellow is the probe molecule from 1dwd. The structure with
green carbons is the ligand from 1dwe acting as the candidate.
It is in the “observed” orientation obtained by superimposing
the R carbons of the 1dwe protein onto the 1dwd protein. The
structure with gray carbons is the candidate oriented by SQ
with R ) 0.3.
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Here we use two measures to assess SQ versus SEAL.
The first, taken directly from Klebe et al., is the
RMSmean, the RMS displacement for S1 over our six
examples. This measures how close the superpositions
are to experiment. The smaller the RMSmean the better
the method. The second, modified from Klebe et al., is
DELTAmean which is the difference in score between
S1 and S2 expressed as a fraction of S1. This is one
measure of the spread in scores. The larger the DEL-
TAmean the better the method. For most values of R,
RMSmean is about the same or lower for SQ than for
SEAL and DELTAmean is higher. Thus SQ is shown
to get better results than SEAL. Moreover, SQ is seen
to take about one-third the time of SEAL.

Overall the highest-scoring SQ superposition ap-
proximates the experimental superposition well with the
RMSmean being better than 0.37, with the results being
fairly insensitive to R. The fact that the SQ-predicted
superpositions are about as good as the lower limit of
0.3 Å is an impressive result, as none of the external
forces imposed by the receptor are included in the SQ
method. This implies that the superposition of isolated

ligands can contain implicit information about their
binding mode to the same receptor.

DataBase Screening. In the previous section we
have demonstrated the ability of SQ to produce accurate
molecular superpositions of single molecules. In this
section we will investigate whether the SQ score can
discriminate between molecules. To assess the suit-
ability of the SQ function for database searching we
have constructed a flexibase18 from the MACCS Drug
Data Report (MDDR),23 a licensed database of druglike
compounds compiled from the patent literature. The
MDDR flexibase is composed of ∼70 000 molecules
represented by ∼1.1 million explicit conformations.

MDDR compounds have associated with them one or
more keywords in the “activity field”. The keywords we
use here are listed in Table 2. We will assume, for the
purposes of this study, that a compound with the
keyword “thrombin inhibitor”, for example, is an active
and that a compound without this keyword is an
inactive.

We will conduct a series of virtual screening experi-
ments. In each we will select a 3D probe and compare

Table 1. Results Obtained for Aligning Six Pairs of Protein Ligands

R ) 0.2 R ) 0.3 R ) 0.4 R ) 0.5

ligand paira timeb superposition score RMSc score RMS score RMS score RMS

SEAL
ldwe/ldwd 2.96 S1 140.08 0.87 139.48 0.26 82.8 0.82 67.88 0.82

S2 122.5 1.36 106.15 0.83 68.33 1.36 55.51 1.37
4dfr/1dhf 3.55 S1 180.55 0.19 141.75 0.19 120.26 0.19 106.4 0.19

S2 178.37 0.23 139.49 0.23 74.83 1.45 62.81 1.44
1tlp/4tln 1.00 S1 61.03 0.77 43.25 0.8 33.55 0.79 28.26 0.89

S2 56.98 1.45 38.19 1.46 32.07 0.84 24.98 1.07
4pvh/9hvp 14.89 S1 187.15 0.12 132.55 0.12 103.94 1.72 85.92 1.72

S2 186.14 1.72 132.19 1.72 103.61 0.12 85.17 0.13
5er2/5er1 3.84 S1 141.96 1.65 101.79 1.66 81.97 1.66 70. 1.66

S2 126.01 1.8 89.6 1.81 72.36 1.81 60.77 1.81
3ptb/1tpp 0.20 S1 87.79 0.7 73.72 0.67 64.05 0.7 59.47 0.67

S2 77.52 0.66 71.63 0.81 56.91 0.65 45.71 0.85
RMSmeand 0.88 0.81 1.12 1.13
DELTAmeane 0.09 0.12 0.18 0.22

SQ
ldwe/dwd 0.52 S1 226.93 0.08 172.85 0.07 141.04 0.06 117.5 0.09

S2 124.09 1.3 86.42 1.3 80.54 1.36 53.53 1.3
4dfr/1dhf 0.88 S1 230.75 0.19 187.33 0.19 162.51 0.2 145.3 0.21

S2 113.73 1.29 184.28 0.24 100.09 0.48 67.22 0.48
1tlp/4tln 0.53 S1 48.21 0.18 41.39 0.17 37.04 0.18 33.93 0.19

S2 32.82 1.76 25.55 1.72 21.1 1.71 18.98 1.69
4pvh/9hvp 3.68 S1 250.83 0.11 186.6 0.11 149.73 0.11 124.4 0.11

S2 234.97 1.72 180.97 1.72 144.32 1.72 120.4 1.72
5er2/5er1 1.40 S1 136.14 0.61 87.58 0.73 68.77 0.68 49.73 0.83

S2 135.15 2.06 72.58 1.48 63. 2.07 48.49 2.11
3ptb/1tpp 0.11 S1 108.25 0.17 91.42 0.12 80.99 0.13 74.18 0.14

S2 108.09 0.67 91.17 0.67 80.44 0.68 73.63 0.69
RMSmean 0.29 0.32 0.31 0.37
DELTAmean 0.31 0.27 0.30 0.36
a The first ligand is taken as the probe and the second as the candidate. b Seconds on a R4400 Silicon Graphics workstation. The time

is insensitive to the value of R. c RMS differences (Å) are those computed between the ligand as bound to the protein versus the ligand
as superposed onto the probe. d Root mean square over six examples. e Root mean square score |S1 - S2|/S1 over six examples.

Table 2. Database Screening Experiments Against MDDR Flexibase

3D probe source of probe
keywords used to
determine activity

no. of
actives

NAPAP crystal structure (leps) thrombin inhibitor 300
indinavir gas-phase energy minimization HIV-1 protease inhibitor 328
AII peptide model-building angiotensin II blocker 2031
- - PAF antagonist (control) 1311
- - renin inhibitor (control) 1144
- - antidiabetic (control) 993
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it to every conformation in the MDDR flexibase. The
best-scoring conformer is retained per compound, and
then the compounds are ranked by decreasing SQuEAL
score. Compounds are “assayed” in this order, and we
monitor how fast actives accumulate. (The same method
was used in Kearsley et al.16 to measure the effective-
ness of topological descriptors.) For instance, if the probe
is a thrombin inhibitor, we will monitor the accumula-
tion of MDDR molecules with the keyword “thrombin
inhibitor”. We can also monitor the accumulation of
actives in an unrelated activity, for instance “renin
inhibitor”, as a control.

3D probes can be obtained in a number of ways
depending on the level of information available to the
modeler. The SQ probes for our experiments are shown
in Figure 3. The first is the structure of NAPAP
cocrystallized with thrombin.24 It is an example of a
probe taken from experimental data. The second probe
is the HIV-1 protease inhibitor indinavir25 in the con-

formation of lowest energy by the MMFF force field.26

It is an example of a modeled structure. The third probe
is a model proposed for the receptor-bound conformation
of angiotensin II.27 This is an especially interesting
probe because it is “discontinuous”; that is, we expect
the candidates to match parts of the probe that are not
nearby in bond topology.

If we use one or two essential points, screening
against the MDDR takes roughly 84 h on a single
processor Silicon Graphics Indigo2 with R10000 proces-
sor, for a screening rate of 224 conformations/min. These
searches are trivially parallelizable, and we usually run
searches on several processors simultaneously, giving
us a completed search overnight.

The results of the virtual assays are summarized in
Figure 4. A biological assay with typical throughput will
accommodate at least a few hundred samples. We
therefore show the results of the top 500 rank-ordered
compounds. If the SQ score had no utility in selecting
actives, actives would appear at a rate proportional to
their frequency in the entire database. This is indicated
by the line marked “random”. In every case there is a
significant increase in the selection of the appropriate
actives over random, sometimes as much as 20-fold.
That is, nearly one out of three or four compounds would
be an active. Most of the control sets of actives perform
similarly to random or worse; i.e., they are selected
against. The only control set that is significantly above
random is the renin inhibitors in Figure 4B. This is not
surprising, since renin inhibitors and HIV protease
inhibitors can be very similar. However, the renin
inhibitor curve is still consistently below the HIV-1
protease inhibitor curve. Thus the SQ score demon-
strates a real ability to select for compounds of a given
activity. Generally, we find that the ranks in any given
search are not very sensitive to the SQ parameters (data
not shown).

Structural Diversity. Many methods, both 2D and
3D, exist for selecting active compounds from large
databases. While it is important that a method select
active compounds at a much greater rate than expected
by chance, it is also important that the method select
compounds in more than one structural class. 3D
similarity methods, which ignore bonding, can usually
find molecules that are topologically different yet present
similar spatial character. To demonstrate this specifi-
cally for SQ, the angiotensin II results will be examined
in more detail. There a few thousand angiotensin II
blockers, which fall into distinct structural classes.
Table 3 lists one possible classification of the nonpeptide
blockers and their rank in the 250 highest-scoring
compounds. Table 3 shows a very good enrichment in
angiotensin blockers; nearly one out of every five
compounds tested is active. It is especially significant
that all these nonpeptide blockers were selected using
a peptide probe. Out of the seven major structural
classes, all have at least one representative with rank
e 250, and four have at least one representative with
rank e 100. Figure 5 shows an example of a small
molecule, with the external registry number 193559 in
the MDDR database, docked onto the angiotensin II
model.

Figure 3. SQ probes used in the database searching experi-
ments. (A) The crystal structure of NAPAP as cocrystallized
with human thrombin (1DWD). One of the guanidine nitrogens
was declared essential type %, given that many thrombin
inhibitors have cations at that position. (B) The global energy
minimum conformation of the HIV-1 protease inhibitor indi-
navir. The hydroxyl oxygen was declared essential type +,
given the importance of having an atom to hydrogen bond to
the active site aspartate, usually the hydroxide in many HIV
protease inhibitors. Nondefault SQ parameters: nodlim ) 7,
R ) 0.4. (C) A model of angiotensin II. All atoms in residues
3-8 are match centers (stick). Other atoms (wire) are ignored.
Atoms shown as spheres were declared essential type %, given
the importance of having an anion at that position. One was
required for a match. Nondefault SQ parameters: nodlim )
7, R ) 0.4.
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Discussion

Two major applications for alignment algorithms are
generating the alignments of a small number of mol-
ecules and searching databases. We have demonstrated
that SQ produces pharmacologically meaningful align-
ments of individual molecules even if the molecules are
not particularly similar topologically. Also we have
shown that SQ is fast enough to be routinely used to
search large 3D databases. The SQuEAL function is
discriminating enough that the highest-scoring com-
pounds from the databases are greatly enriched in
actives and general enough that many of the actives are
from diverse chemical classes. Merck scientists have
discovered many novel active compounds by doing SQ
searches.

Most of the robustness of SQ comes from the fact that
it is a two-layer procedure. The clique-matching step is
equivalent to atom-based matching methods such as
DISCO,11 and the simplex optimization is equivalent to
many field-based methods such as SEAL.4 Thus the best
features of atom-based and field-based methods are

combined. The clique-matching rapidly provides a small
diverse sampling of promising initial orientations that
the slower simplex optimization step can work on. This
helps keep the optimizer from spending large amounts
of time investigating less promising superpositions. Also
the optional use of essential points in the clique-
matching step permits the user to put severe constraints
on the type of superpositions that are allowed. This adds
some of the flavor of substructure searching to SQ, so
that unwanted superpositions can be quickly eliminat-
edfrom consideration. Conversely, the simplex optimiza-
tion step allows the superpositions to drift from the
original orientation dictated from the clique-matching.
Also the SQuEAL score quantifies the overlap of all the
atoms, not just the ones in the clique. Adjustable
parameters allow the user to change the relative influ-
ence of clique-matching and simplex optimization on the
final superpositions.

Many field-based superposition methods (see, for
example, refs 4 and 7) use the overlap of electrostatic
potentials or similarity between partial charges as a

Figure 4. Plots of number of active molecules found versus number of molecules tested for searches over the MDDR database
with the three probes in Figure 3. Some of the curves are not visible because the first active occurs after the first 500 molecules
tested. (A) NAPAP as a probe. The corresponding actives are “thrombin inhibitors”. (B) Indinavir as a probe. The corresponding
actives are “HIV-1 protease inhibitors”. (C) Angiotensin II as a probe. The corresponding actives are “angiotensin II blockers”.

Table 3. Angiotensin Actives in MDDR Classified by Structural Families and Their Ranks in the SQ Search

class A compound 193196 214158 213662 193258 210449 215497
rank 44 52 97 160 203 204

class B compound 193400 193399 193061
rank 77 112 113

class C compound 211727 173764 220277 220273 179243 191960 211682 179014 193061
rank 8 24 40 46 54 57 99 109 113
compound 220274 212944 210457 218116 211637 175599 220275 220276 188900
rank 115 120 129 135 153 159 161 163 167
compound 187010 213683 191141 189952
rank 178 185 192 218

class D compound 211908 218282 211907 179025 179029 216455 210825 211910 213196
rank 14 60 74 90 128 140 197 227 230
compound 179024
rank 246

class E compound 193557
rank 174

class F compound 215549 179767
rank 211 217

class G compound 191064 190365
rank 145 221

other compound 215418 193559 215419 215550
rank 45 61 103 173
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scoring function. This requires having at least polar
hydrogens in the models and partial charges on all
atoms. These types of scoring functions tend to be
dominated by the atoms with the most extreme charges,
and many local details around individual atoms are lost
in favor of global properties such as the dipole moment.
The SQuEAL function, in contrast, uses only non-hy-
drogen atoms. This greatly smooths the superposition
scoring surface. That pharmaceutically relevant physio-
chemical types are used instead of partial charges
prevents a few atoms from dominating the score. Thus
the SQuEAL function attains a good balance between
local and long-range effects.

SQ treats both candidate and probe molecules as
rigid, and one potential limit of our current implemen-
tation is that it depends on having several precomputed
conformations of candidate molecules. It is possible to
miss some important superpositions and/or miss com-
pounds in a database search because key conformations
are missing. Some methods, for instance genetic algo-
rithms (see ref 10), have been implemented wherein
molecules can adjust their conformations on-the-fly.
However, these are generally so time-intensive that only
a few pairs of molecules can be superimposed in a
reasonable time, and thus the methods are not usually
applicable to database searches. We have found that a
reasonably complete sampling of conformational space
can be precomputed at not too large a cost, so that
missing conformations are usually not a problem for
us.18 Moreover, we also argue that it does not matter
whether some compounds are missed as long as the set
of selected compounds is enriched in actives.

The cost effectiveness of 2D versus 3D methods is an
important issue in database searches. Certainly, 3D
methods are more computationally and informationally
expensive. A lot of structural and/or SAR information
is usually needed to specify a 3D query. Also, for us the
flexibase approach incurs the computational cost of
precomputing conformers. Moreover, SQ, while rela-
tively rapid for a 3D similarity method, is slow com-
pared to most 2D similarity methods. We have compiled
a lot of experience running comparable probes with SQ
and TOPOSIM,16 our in-house descriptor-based 2D
similarity method. A straighforward comparison of
TOPOSIM and SQ is difficult. TOPOSIM is descriptor-

based and all parts of the probe molecule are treated
uniformly, while SQ is based on superposition and parts
of the molecule can be emphasized with essential points.
The atomic descriptors are quite different. Finally, the
relative sizes of the probe and candidate are handled
differently. Still, one can make some generalizations.
For druglike probes the number of actives found in the
top-scoring 500 molecules is roughly the same for
TOPOSIM and SQ. However, SQ usually finds very
different actives than TOPOSIM. (Our descriptor-based
3D similarity search system GEOSIM17 finds sets of
actives much more like TOPOSIM than like SQ.) On
the other hand, when the probe is a folded peptide,
TOPOSIM usually cannot find any nonpeptide actives
in the top 500, whereas SQ has no difficulty doing so,
as seen in our angiotensin II example. This is a clear
advantage of considering positions in space, rather than
through-bond distances. How many actives are found
is not the only criterion of cost effectiveness. Another
consideration is the diversity of the top 500 molecules.
Typically SQ generates a much more diverse set than
TOPOSIM. Again, this is due to SQ seeing only atoms
positions and ignoring bonds. Finally, a very important
feature of a method like SQ is that during the search it
suggests the best superposition of each of the candidates
onto the probe, something TOPOSIM and GEOSIM,
which are descriptor-based, cannot do. Superpositions
are essential for the chemist to suggest pharmacophores
or propose chemical modifications.

SQ has proved very versatile, and many useful
extensions, beyond those presented here, have been
implemented at Merck. For instance, SQ is trivially
modified so that the probes and candidates can include
various “dummy atoms” with unique match properties.
Examples are ring centroids, ring normals, and hydrogen-
bond extenders. These can be used to further constrain
the desired type of superpositions for specific problems.
Also, the SQ program has been written so that the
SQuEAL function can be replaced by another scoring
function. For instance, one can take the score from a
precalculated regular grid. If the grid is generated from
a receptor site, SQ becomes equivalent to our docking
program FLOG.19 The original use for SQ at Merck was
for database searching. However, we have implemented
a method (MEGA-SQ) for pharmacophore elucidation
(similar in concept to DISCO11) wherein precalculated
conformations of many molecules are compared pairwise
with SQ. Ensembles of one conformation from each
molecule are then constructed. The ensembles with the
highest sum of pairwise scores represent the best
superposition of the molecules. MEGA-SQ will be pre-
sented separately at a future date.

Conclusion

We have developed a program (SQ) that performs
automatic objective pairwise alignment of molecules. It
produces alignments that are pharmaceutically rel-
evant, and it can select diverse active compounds from
large databases, making it an extremely useful tool in
a medicinal chemistry laboratory.
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Appendix
Clique-Building. The pseudocode for the clique-building

step is given below. A clique is a paired set of atoms in arrays
CP and CC. A “data mask” in the form of temporary arrays
MP and MC is used to track which probe or candidate atoms
are available for matching (1) or have already been matched
(0) (Scheme 2).

This algorithm is “comprehensive” in that all probe-
candidate atom combinations are tried. Our approach is that
at each step in the search, the algorithm selects the atom-
atom pair for which the weighted distance difference R(i′,j′,k,m)
(eq A1) relative to the previously selected pair is a minimum;
that is, it traverses the path of “minimum weighted residuals”.
Once a path is complete, the root atom pairs are examined for
alternate allowed paths until none are identified. We refer to
this multipass approach as “breath firstsdepth second”. We
tried a number of weighting schemes for computing R(i′,j′,k,m).
In our earlier work,19 R(i′,j′,k,m) ) |D(i′,k) - D(j′,m)|.

We find that a more complicated scheme improves the
results. In addition to the first term for R(k,m), we include a
second term that downweights small distances and a third
term that emphasizes good atom pair matches.

SQuEAL Function. The individual terms for W(i,j) in eq
2 in the main text are defined in the following way:

The second term upweights near-neutral interactions which
would otherwise be swamped out by the first term. The default
are cp ) 1.5 and cs ) 0.20. The values of P are available as
Supporting Information.

The term E(i) is a rapid way to approximate the exposed
surface area of atom i by looking at two other atoms (k and
m) in the same molecule.

If a and b are the vectors i f k and i f m, rdot is the dot
product of the normalized a and b and rave is the mean length
of a and b. The default is co ) 0.33. We find that this equation
gave significantly better results than the original SEAL
volume expression.

Supporting Information Available: Matrix P that speci-
fies the similarity between SQ types. This information is
available free of charge via the Internet at http://pubs.acs.org.
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